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C A L C U L A T I O N  O F  T H E R M A L - D I F F U S I O N  

S E P A R A T I O N  I N  A M I X T U R E  O F  G A S E S  

A. S. Raspopin and T. V. Solomeina U DC 533.735 

A m e t h o d  fo r  calculating thermal-di f fus ion  separation in a mu l t i componen t  mix ture  o f  gases  is p resen ted  

that does  not  require the application o f  either a thermal-d i f fus ion  coef f icient  or other quanti t ies  assoc ia ted  

with it (a  thermal-d i f fus ion  ratio, a fac tor  o f  thermal  d i f fus ion) .  A compar ison  o f  the calculated resul ts  with 

exper imen ta l  data  f o r  binary mix tures  is given. 

The proposed method is based on extension of a model, described in [1 ], for mass transfer  in 

inhomogeneous gases to nonisothermal mixtures. Accounting for the nonisothermicity of a mixture does not affect 

the basic principles of the model, but only calls for modification of the form of an expression for the diffusion 
component of a flow. 

We will consider a nonisothermal gaseous mixture which is inhomogeneous in composition and which 
consists of n components. We will write the density of the total mole flux of the i-th component of the mixture in 

the same way as in the isothermal case [1 ]: 

N i = Nia +Nic .  (1) 

We will also leave unchanged the expression for the convective component of the mole flux density of the i-th 
component of the mixture: 

Nic = cir. (2) 

We will write the relationship for the diffusion component of the mole flux density of the i-th component of the 

mixture just as in [2 ], but without two free-path lengths: 

1 1 
Nid = -- -~ liuiVc i - -~ liciVui �9 (3) 

The second term in formula (3) reflects the contribution to the diffusion flux attributable to the inhomogeneity of 
the mixture temperature. 

Comparing expression (3) with the relationship used in [1 ] for the diffusion component in the isothermal 
case, we can write: 

1 
liu i = D i �9 (4) 

Substituting D i into the first term in expression (3) and replacing u i in the second term of expression (3) from. 
formula (4), after transformations, we obtain 

Nid = -- V (Dici) + Dici v (In li) . (5) 

According to [3 |, the expression for l i in a model of solid spheres has the form 
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x, xt-! 
n 

ti = c ~ , ( 6 )  
]=1 

where 

n 

r = Y~ cj; x / =  c / c ;  
]=1 

Kq are constants that depend on the masses and diameters of the molecules. 

Changes in the mole fractions of the components observed in the process of thermodiffusion separation are 
small; therefore, ignoring them, formula (6) yields 

v ( in l;) = - v (In c ) .  (7 )  

Restricting the fur ther  consideration to mixtures that obey the equation of state of an ideal gas and assuming the 

pressure to be uniform, we obtain 

V (In c) = - V (In 7"). (8) 

With Eqs. (7) and (8) exprcssion (5) takes the form 

Dt~c i 
Nid = -- V (O,r + - - ~  VT.  (9)  

T a k i n g  account  of  Eqs. (2) and  (9) ,  we  rewrite Eq. ( l )  as  

D~:i 
N i = - V (D,ci) + T V T  + civ.  (10) 

Substitution of expression (10) into the continuity equation for the i-th component of the mixture  [4 ] gives 

Oci [ D~:i ] ( I I )  
0--7 + V - V (Dici) + T V T  + civ = 0 .  

In order  to obtain a closed system of equations from which it is possible to determine all the unknown 

functions (n functions ci(r, t) and three velocity components v(r, t)), we must add the Navier-Stokes equations (the 

temperature distribution is assumed to be prescribed) to the n equations of the type of Eq. (11). Th e  pressure, 

mass density, mixture viscosity, and coefficients D i, entering into the equations of the system must be substituted 

in the form of explicit dependences on the mole densities and temperature: 

/t 

p = c R T ,  ,o = ~ cyM], ,u =/x (Cl, C 2 . . . . .  Cn, T ) .  (12) 
j = l  

The  coefficient of self-diffusion in a mixture D i is calculated by the Blank formula [1 l: 

D i = (13) 
j= 1 cDij 

When j ~ i, Dij is the trace coefficient of mutual diffusion of type-/molecules  in a gas of type-j  molecules at a mole 

density equal to c; Dii is the coefficient of self- diffusion of type- /molecules  at a mole density equal to c. 

To check the proposed method, the above-mentioned system of equations was solved numerically for binary 

mixtures of gases with initial and boundary conditions corresponding to a one-dimensional  model of the method 
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Fig. 1. The dependences of a t  I on the mole fraction of heavy component 

calculated from the results of the solution of system (14): 1) X e - H e  mixture. 

Tcold = 315 K, Thor = 365 K; 2) Ar -He ,  288 and 373; 3) Kr -Ne ,  225 and 

275; 4) K r - A r ,  425 and 475. Curves denote approximations of the 

experimental data of [6 ] and a linear approximation of the data from [7 ] for 

the A r - H e  mixture. 

of two-volumes and with a given linear temperature distribution along the channel that connects the volumes. In 

this case the system consists of three equations: 

oct o [ o O~cl OT v] 
Oi" + ~Z -- ~Z (DlCl) + T Og + cl = 0, 

o---?- + ~ - ~ (D2c2) + ---T- o= + c2 = O, (14) 

o-~ (pO + ~ + p  - ~ , ~  = o 

(the z axis is directed along the channel,/~ = const). 
To obtain a numerical solution of system (14), each equation was approximated following McCormack's 

explicit scheme [5 ]. The temperatures of the hot and cold volumes Thot and Tcold were assigned and, proceeding 
from these values, the temperatures were calculated at grid nodes located along the channel. The values of cDi/in 
expression (13) depend only on the temperature and properties of the gases in the mixture. In all the calculations, 

whose results are presented below in graphs, to compute cDq we use the formulas for a first approximation of the 
Chapman-Enskog theory, the Lennard-Jones (12-6) potential, the parameters of the potential for pure gases from 

[4 ], and the parameters of the potential calculated by ordinary combination rules for interaction between 

heterogeneous molecules. 
The initial conditions cl (z, 0) and c2(z, 0) were assigned from the condition of constancy of pressure and 

mole fractions of components along the channel and in the volumes; v(z, 0) = 0. The boundary conditions - the 

velocities v at fictitious nodes located inside the volumes at a distance of one grid spacing from the edges of the 

channel - were assumed to be equal to the velocities at the channel edges; ct and c2 at the channel edges were 
taken to be equal to their values in the volumes and were calculated at each time step from the balance condition 

of the number of molecules. In calculations we used grids with 7 and 13 nodes along the channel length. 
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Fig. 2. The dependences of a t oll temperature calculated for equimolar 

mixtures from the results of the solution of system (14) (in all of the 

calculations/'hot - Tcold = 50 K): 1) Xe -Ar  mixture; 2) Ar-Ne;  3) Kr -Ne ;  

4) Xe-He.  Curves denote approximations of the experimental data of [6 l; 
the dashed curve denotes approximations for Xe-Ar  mixture. T, K. 

Fig. 3. Thermal-diffusion separation in A r - H e  mixture. (Ax, difference in 

the mole fractions of argon in the cold and hot volumes; x, mole fraction of 

argon at the initial moment): 1) Tcola = 290 K, 7"hot = 400 K; 2) 293 and 596.2; 
3) 294 and 795.4; 4) 291.5 and 1010.8. Curves denote approximations of the 
experimental data of [8 ]. 

The numerical solution was continued until cl, c2, and v had nearly stationary distributions. The stationary 

values of ci and c2 in the hot and cold volumes were used to calculate at by the formula from [6 ], if it was necessary 
for comparison with experimental data. 

We can see from Fig. 1 that the form of the concentration dependences does not contradict the kinetic 
theory of gases (the dependences are close to linear ones), and the deviation from experimental data lies within 

the usual limits [6 I. 

Figure 2 shows that for the two mixtures there is a rather good quantitative agreement with experimental 

data, but for argon-neon and xenon-argon mixtures a noticeable difference in the region of low temperatures is 

observed. It can be noted that for the xenon-argon mixture the character of disagreement with experimental data 

is similar to the deviation given in [6 ] of the values of a t calculated according to the Chapman-  Enskog theory for 
the Lennard-Jones (12-6) potential from those obtained experimentally. 

Figure 3 presents the results of the solution of system (14) at considerable differences between the 
temperatures of the hot and cold volumes and, consequently, at rather large values of separation. In spite of the 

fact that in deriving expression (9) we used the smallness condition for the change in mole fractions, the difference 

from experimental data does not exceed 20%. It can be seen that the traditional mode of description of thermal- 

diffusion separation for large temperature differences could have caused difficulties associated with the selection 

of a mean temperature. For example, for the data denoted by number 4 in Fig. 3 the assignment temperature 
calculated according to [6 ! is equal to 509 K, while that calculated according to [9 ] is equal to 579 K. Calculations 

by the method proposed do not cause such difficulties, since the initial data used (the coefficients Dij) refer to 
strictly defined temperatures and concentrations. 

In addition to the above-given results obtained using the Lennard-Jones (12-6) potential, we carried out 

calculations for Maxwell molecules and for the potential of solid spheres. In solving system (14) for Maxwell 

molecules, the prescribed initial state remains unchanged, i.e., thermal-diffusion separation is absent. Using the 
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model of solid spheres, we obtained almost linear dependences of a t I on concentration and values of at that were 
independent of the temperatures of the hot and cold volumes. All these results agree with the inferences of the 

kinetic theory of gases. 

N O T A T I O N  

n, number of components in the mixture; i, j, subscripts numbering the mixture components; Ni, density 
of the total mole flux of the i-th component; Nid, density of the diffusion mole flux of the i-th component; N/c, 

density of the convective mole flux of the i-th component; ci, partial mole density of the i-th component; c, total 
mole density of the mixture; v, local velocity of the mixture motion as a whole (v is the same in a one-dimensional 

case); li, mean free path of type-/ molecules; ui, average thermal velocity of type-/ molecules; Di, self-diffusion 
coefficient of molecules of the i-th mixture component; Dq, trace coefficient of mutual diffusion of type-/molecules 
in gas j; Dii, self-diffusion coefficient in gas i; Kij, constants entering into formula (6); T, temperature; p, pressure; 
p, mass density of mixture;/z, mixture viscosity; M i, molecular mass of i-th component; xi, mole fraction of i-th 

component; t, time; z, coordinate; R, universal gas constant; Thor, temperature of hot volume; Tcold, temperature 
of cold volume; at, factor of thermal diffusion. 
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